GAN/CNN Image Detector
Project details
Trained multiple architectures (EfficientNetV2, StyleGAN/ProGAN discriminators) on a 10k+ image dataset to detect synthetic imagery.
- • Transfer learning, dropout, heavy augmentation
- • Evaluation with ROC/AUC, PR curves and confusion matrices
Results & impact
- • 97% acc · 0.973 F1 · 0.997 AUC (EffNetV2)